Actions in each step

01 RETRIEVE RECORDS FROM CDM

[step 01_1]: create conceptset datasets (T2.1)

input: VACCINES, EVENTS, MEDICINES

parameters : concept_sets_of_our_study, ECVM_CDM_tables, ECVM_CDM_codvar, ECVM_CDM_datevar, concept_set_domains, concept_set_domains, concept_set_codes_our_study.

output: concept set datasets, one per concept set, named after the concept set itself (data model: it is a sequence of records from multiple tables of the Common Data Model)

In this step the function CreateConceptSetDatasets is used. The set of input tables are inspected and a group of datasets is created, each corresponding to a concept set. Each dataset contains the records of the input tables that match the corresponding concept set codes.

[step 01_2]: create spells (T2.1)

input: OBSERVATION_PERIODS

parameters: study_end, this_datasource_has_subpopulations, op_meanings_list_per_set, op_meaning_sets, subpopulations, op_meaning_sets_in_subpopulations

output: D3_output_spells_category , output_spells_category_meaning_set (only if the datasource has subpopulations)

In this step the function CreateSpells is used. It takes as input a dataset with multiple time windows per unit of observation (OBSERVATION_PERIODS). The output is a datasetof spells, i.e., disjoint periods of time.

[step 01_3]: create dates from PERSONS (T2.1)

input: PERSONS , OBSERVATION_PERIODS

output: D3_PERSONS, D3_events_DEATH

In this step birth date and date of death from PERSONS are fixed in case days or months are missing (they are not mandatory variables). Once PERSONS is corrected it is saved as D3_PERSONS. D3_events_DEATH is also created containing date of death

[step 01_4]: create prompt and itemset datasets (T2.1)

input: SURVEY_ID, SURVEY_OBSERVATIONS

parameters: ECVM_CDM_EAV_tables_retrieve, ECVM_CDM_datevar_retrieve, dateformat, study_variable_names, itemset_AVpair_our_study_this_datasource

output: covid_registry

In this step, the set of input tables are inspected and a group of datasets is created, each corresponding to a prompt or to a itemset. Each dataset contains the records of the input tables that match the corresponding prompt or itemset.

02 QUALITY CHECK FOR DOSES

[step 02_1]: create quality check criteria (T2)

input: concept set datasets

parameters : concept_set_domains, study_years

output: D3_concepts_QC_criteria

Creation of quality check criteria for vaccine doses and recoding of missing manufacturer

[step 02_2]: apply quality check criteria (T3)

input: D3_concepts_QC_criteria,

parameters : concept_set_domains, study_years, thisdatasource

output: Flowchart_QC_criteria, selected_doses

Application of the vaccine doses QC criteria. Creation of final dataset for the dosses and flowchart including the number of doses excluded by criteria

03 CREATE EXCLUSION CRITERIA

[step 03_1]: create exclusion criteria (T2)

input: PERSONS, OBSERVATION_PERIODS, D3_output_spells_category

parameters : study_start, study_end, this_datasource_has_subpopulations

output: D3_selection_criteria_doses

Creation of quality check criteria for D3_PERSONS, based on personal data and spells.

[step 03_2]: merge persons concept (T2)

input: D3_selection_criteria_doses, D3_concepts_QC_criteria, output_spells_category

parameters : study_end

output: persons_doses

Merge vaccine doses information with persons. (with exclusion criteria variables)

04 APPLY EXCLUSION CRITERIA

[step 04_1]: apply exclusion criteria (T3)

input: D3_selection_criteria_doses

parameters : this_datasource_has_subpopulations, subpopulations,

output: Flowchart_exclusion_criteria, Flowchart_basic_exclusion_criteria, D4_study_population (data model), D4_study_source_population

output parameters: subpopulations_non_empty

In this step the function CreateFlowchart is used: the selection criteria are applied and the study population is selected. A flowchart is created as a byproduct.

[step 04_2]: apply quality check exclusion criteria doses (T3)

input: persons_doses

parameters : this_datasource_has_subpopulations, subpopulations

output: Flowchart_doses, HTML_flowchart_doses

In this step the function CreateFlowchart is used: the selection criteria are applied and the study population is selected. A flowchart is created as a byproduct.

[step 04_3]: descriptive statistics excluded_persons (T3)

input: output_spells_category, D3_selection_criteria

output: number_criteria_excluded, Plots: Last spells end date, Density_plot_distance_spells, pop_excluded

In this step some plots and count about the exclusion criteria are created. They are used to set some parameter in the next run of the script or to check if everything work correctly.

05 CREATE STUDY VARIABLES

[step 05_1]: components (T2.2)

input: concept set datasets of outcomes (narrow and possible), D4_study_population, subpopulations_non_empty

parameters: firstYearComponentAnalysis, secondYearComponentAnalysis, OUTCOME_events, this_datasource_has_subpopulations, date_format, datasources_with_specific_algorithms, exclude_meanings_from_OUTCOME

output: for each outcome OUTCOME, D3_events_OUTCOME_ TYPE and D3_components_OUTCOME

In this step the function MergeFilterAndCollapse is used. All outcomes that occurred to the persons in the study population during the study period or during lookback are listed. Moreover, components are created for narrow and possible concept sets, for HOSP and PC meanings. Finally, datasource-tailored algorithms are implemented.

[step 05_2] : create secondary components (T2.2)

input: concept set datasets involved in secondary components, D4_study_population

parameters: this_datasource_has_subpopulations, SECCOMPONENTS, concept_set_seccomp, rule_seccomp, distance_seccomp, direction_seccomp

output: for each secondary component SECCOMP, D3_eventsSecondary_SECCOMP.RData

[step 05_3] : create events all outcomes (T2)

input: D4_study_population, subpopulations_non_empty, D3_events_OUTCOME_narrow, D3_events_OUTCOME_possible, for all outcomes OUTCOME; conceptsets for CONTROL_events

parameters : OUTCOMEnoCOVID, CONTROL_events, this_datasource_has_subpopulations

output: list_outcomes_observed, D3_events_ALL_OUTCOMES

In this step a list containing all observed outcomes including control outcomes and excluding COVID, and a dataset is created, containing the first occurrence recorded during lookback or during study period of each outcome.

[step 05_4] : code counts of first occurrence of outcomes in the study population (QC)

input: D4_study_population, D3_events_ALL_OUTCOMES

parameters : this_datasource_has_subpopulations, list_outcomes_observed_only_diagnosis

output: QC_code_counts_in_study_population_OUTCOME_YYYY (exported to csv)

This step counts the codes occurring during each year of the study period of each outcome. Only the first occurrence of each person is included

[step 05_5]: apply component strategy (QC)

input: D4_study_population, D3_events_OUTCOME_TYPE

parameters : this_datasource_has_subpopulations, firstYearComponentAnalysis, secondYearComponentAnalysis, OUTCOME_events, date_format, subpopulations_non_empty

output: QC_all_components_OUTCOME

In this step outcomes are split in all possible components

[step 05_6]: covariates at baseline (T2.2)

input: D4_study_population, concept set datasets corresponding to COV_conceptssets, plus the six datasets corresponding to the concept sets of the three outcomes CAD, MYOCARD and HF, which are to be used in the covariate CV: “CV”,“COVCANCER”,“COVCOPD”,“COVCKD”,“COVDIAB”,“COVOBES”,“COVSICKLE”

parameters : this_datasource_has_subpopulations, exclude_meaning_of_event, subpopulations_non_empty

output: D3_study_population_covariates

In this step the diagnostic components of the risk factors are created as presence of a diagnostic code during lookback, and added to the study population

[step 05_7]: Drug Proxy at baseline (T2.2)

input: D4_study_population, concept set datasets in DRUGS_conceptssets (“CV”, “COVCOPD”, “COVCKD”, “COVDIAB”)

parameters : this_datasource_has_subpopulations, DRUGS_conceptssets, subpopulations_non_empty, output: D3_study_population_DP

In this step for each subject in the study population a the drug proxy component of each risk factor is created: there must be at least 2 records during 365 days of lookback.

[step 05_8]: baseline characteristics (T2.3)

input: D4_study_population, D3_study_population_covariates, subpopulations_non_empty

parameters : this_datasource_has_subpopulations

output: D4_study_population_cov

In this step few simple covariates (age etc) are added to the study population.

[step 05_9]: ALL covariates at baseline (T2.3)

input: subpopulations_non_empty, D4_study_population, D4_study_population_cov, D3_study_population_DP

parameters : this_datasource_has_subpopulations

output: D3_study_population_cov_ALL

In this step the diagnostic and the drug proxy component of each risk factor are merged into a composite OR, and added to the study population.

[step 05_10]: components for COVID severity (T2.2)

input: D4_study_population.RData, D3_events_COVID_narrow, D3_events_DEATH.RData, covid_registry, COVID_symptoms parameters: this_datasource_has_subpopulations, subpopulations_non_empty output: D3_components_covid_severity

In this step, components to identify occurrence of covid and of its level of severity are computed based on the concept sets COVID_narrow, “COVIDSYMPTOM”,“ARD_narrow”,“ARD_possible”, and ‘MechanicalVent’, and possibly on the records of covid registry, if available in the data source

[step 05_11]: algorithms for COVID severity (T2.3)

input: # input: D3_components_covid_severity.RData, D4_study_population.RData

parameters: this_datasource_has_subpopulations, subpopulations_non_empty

output: D3_algorithm_covid, D3_outcomes_covid

In this step, the components created in the previous step are combined to obtain levels of covid severity

06 CREATE D3 FOR DOSES AND COVERAGE

[step 06_1]: create D3 datasets(T2)

input: D4_study_population, selected_doses, D3_outcomes_covid

output: D3_study_population_no_risk, D3_Vaccin_cohort_no_risk

Creation of D3 datasets present in the SAP document but without risks.

[step 06_2]: covariates at vaccination (T2.2)

input: D3_Vaccin_cohort_no_risk, concept set datasets of covariates

output: D3_Vaccin_cohort_covariates

In this step the diagnostic components of the risk factors are created as presence of a diagnostic code during lookback, and added to the study population

[step 06_3]: DP at vaccination (T2.2)

input: D3_Vaccin_cohort_no_risk, concept set datasets in DRUGS_conceptssets

output: D3_Vaccin_cohort_DP

In this step for each subject in the study population a the drug proxy component of each risk factor is created: there must be at least 2 records during 365 days of lookback.

[step 06_4]: vaccination_characteristics.R(T2.3)

input: D3_Vaccin_cohort_no_risk, D3_Vaccin_cohort_covariates

output: D4_Vaccin_cohort_cov

In this step few simple covariates (age etc) are added to the study population.

[step 06_5]: ALL covariates at vaccination V2 (T2.3)

input: D3_Vaccin_cohort_no_risk, D4_Vaccin_cohort_cov , D3_Vaccin_cohort_DP

output: D3_Vaccin_cohort_cov_ALL

In this step the diagnostic and the drug proxy component of each risk factor are merged into a composite OR, and added to the study population.

[step 06_6]: create D3 datasets(T2)

input: D3_study_population_no_risk, D3_study_population_cov_ALL , D3_Vaccin_cohort_cov_ALL

output: D3_study_population, D3_Vaccin_cohort, D3_vaxweeks_vaccin_cohort, D3_studyweeks, D3_vaxweeks, D3_vaxweeks_including_not_vaccinated

Creation of all D3 datasets present in the SAP document.

[step 06_7]: MIS population (T2)

input: D3_events_ALL_OUTCOMES, D3_outcomes_covid , D3_study_population

output: D3_study_variables_for_MIS, D4_population_b, D3_selection_criteria_c, D4_population_c_no_risk, D3_selection_criteria_d, D4_population_d

Creation of D3 datasets for MIS/myocard present in the SAP document but without risks.

[step 06_8]: covariates at covid (T2.2)

input: D4_population_c_no_risk, concept set datasets of covariates

output: D3_population_c_covariates

In this step the diagnostic components of the risk factors are created as presence of a diagnostic code during lookback, and added to the study population

[step 06_9]: DP at covid (T2.2)

input: D4_population_c_no_risk, concept set datasets in DRUGS_conceptssets

output: D3_population_c_DP

In this step for each subject in the study population a the drug proxy component of each risk factor is created: there must be at least 2 records during 365 days of lookback.

[step 06_10]: covid characteristics (T2.3)

input: D4_population_c_no_risk, D3_population_c_covariates

output: D4_population_c_cov

In this step few simple covariates (age etc) are added to the study population.

[step 06_11]: ALL covariates at covid_V2 (T2.3)

input: D4_population_c_no_risk, D4_population_c_cov, D3_population_c_DP

output: D3_population_c_cov_ALL

In this step the diagnostic and the drug proxy component of each risk factor are merged into a composite OR, and added to the study population.

[step 06_12]: MIS population c (T2)

input: D4_population_c_no_risk, D3_population_c_cov_ALL

output: D4_population_c

In this step risks are added to the population of cohort c.

[step 06_13]: Poisson population (T2)

input: D3_vaxweeks_including_not_vaccinated, D3_Vaccin_cohort_cov_ALL, D3_outcomes_covid

output: D3_vaxweeks_poisson

In this step the dataset containing the subjects and time varying covariate (COVID) for poisson analysis

07 CREATE D4 RISK AND BENEFIT

[step 07_1]: create person time for risks (T3)

input: D3_vaxweeks_including_not_vaccinated, D3_events_ALL_OUTCOMES

parameters : this_datasource_has_subpopulations, subpopulations_non_empty, list_outcomes_observed

output: D4_persontime_risk_week

In this step the function CountPersonTime is used. The output contains persontime and counts of all outcomes, measured both as narrow and as broad.

[step 07_2]: create person time risks year (T3)

input: D3_vaxweeks_including_not_vaccinated, D3_events_ALL_OUTCOMES

parameters : this_datasource_has_subpopulations, subpopulations_non_empty, list_outcomes_observed

output: D4_persontime_risk_year

In this step the function CountPersonTime is used. The output contains persontime and counts of all outcomes, measured both as narrow and as broad.

[step 07_3]: create person time for benefit (T3)

input: D3_vaxweeks_including_not_vaccinated, D3_outcomes_covid

parameters : this_datasource_has_subpopulations, subpopulations_non_empty, list_outcomes_observed_COVID

output: D4_persontime_benefit_week

In this step the function CountPersonTime is used. The output contains persontime and counts of the levels of covid.

[step 07_4]: create person time benefits year (T3)

input: D3_vaxweeks_including_not_vaccinated, D3_outcomes_covid

parameters : this_datasource_has_subpopulations, subpopulations_non_empty, list_outcomes_observed_COVID

output: D4_persontime_benefit_year

In this step the function CountPersonTime is used. The output contains persontime and counts of the levels of covid.

[step 07_5]: aggregate sex birth cohort (T3)

input: D4_persontime_risk_week, D4_persontime_benefit_week, D4_persontime_risk_year, D4_persontime_benefit_year

output: D4_persontime_risk_week_BC, D4_persontime_benefit_week_BC, D4_persontime_risk_year_BC, D4_persontime_benefit_year_BC

Aggregating the data for birth_coohort and sex

[step 07_6]: aggregate sex risk factor (T3)

input: D4_persontime_risk_week, D4_persontime_benefit_week, D4_persontime_risk_year, D4_persontime_benefit_year

output: D4_persontime_risk_week_RF, D4_persontime_benefit_week_RF, D4_persontime_risk_year_RF, D4_persontime_benefit_year_RF

Aggregating the data for risk_factors

[step 07_7]: create person time vax cohort (T3)

input: D3_events_ALL_OUTCOMES, D3_vaxweeks_vaccin_cohort

parameters : this_datasource_has_subpopulations, subpopulations_non_empty, list_outcomes_observed

output: D4_persontime_risk_month

In this step the function CountPersonTime is used. The output contains monthly persontime and counts of the levels of covid for the vaccinated cohort.

[step 07_8]: aggregate monthly (T3)

input: D4_persontime_risk_month

output: D4_persontime_risk_month_RFBC

Aggregating the monthly data for risk_factors and birth cohort.

[step 07_9]: create person time MIS year (T3)

input: D3_events_ALL_OUTCOMES, D4_population_b, D4_population_c, D4_population_d

output: D4_persontime_b, D4_persontime_monthly_b, D4_persontime_c, D4_persontime_monthly_c, D4_persontime_d, D4_persontime_monthly_d

In this step the function CountPersonTime is used. The output contains persontime and counts for MIS/myocard cohorts.

[step 07_10]: aggregate monthly MIS (T3)

input: D4_persontime_monthly_b, D4_persontime_monthly_c, D4_persontime_monthly_d

output: D4_persontime_monthly_b_BC, D4_persontime_monthly_c_BC, D4_persontime_monthly_d_BC

Aggregating the monthly data for MIS/myocard cohorts.

[step 07_11]: create person time poisson (T3)

input: D3_events_ALL_OUTCOMES, D3_vaxweeks_poisson

output: D4_persontime_risk_month_poisson

In this step the function CountPersonTime is used. The output contains persontime and counts for poisson.

[step 07_12]: aggregate monthly Poisson (T3)

input: D4_persontime_risk_month_poisson

output: D4_persontime_monthly_poisson_RF

Aggregating the monthly data for the poisson.

08 CALCULATE THE INCIDENCE RATES

[step 08_1]: IR (T4)

input: D4_persontime_risk_week_BC, D4_persontime_benefit_week_BC, D4_persontime_risk_year_BC, D4_persontime_benefit_year_BC, D4_persontime_risk_week_RF, D4_persontime_benefit_week_RF, D4_persontime_risk_year_RF, D4_persontime_benefit_year_RF, D4_persontime_risk_month_RFBC

parameters : list_outcomes_observed

output: D4_IR_benefit_week_BC, D4_IR_benefit_fup_BC, D4_IR_risk_week_BC, D4_IR_risk_fup_BC, D4_IR_benefit_week_RF, D4_IR_benefit_fup_RF, D4_IR_risk_week_RF, D4_IR_risk_fup_RF, D4_persontime_ALL_OUTCOMES

Calculate the incidence rates for birth cohorts and risk factors datasets for both risk and benefit

[step 08_2]: IR MIS (T4)

input: D4_persontime_b, D4_persontime_monthly_b_BC, D4_persontime_c, D4_persontime_monthly_c_BC, D4_persontime_d, D4_persontime_monthly_d_BC

parameters : list_outcomes_observed

output: RES_IR_MIS_b, RES_IR_monthly_MIS_b, RES_IR_MIS_c, RES_IR_monthly_MIS_c, RES_IR_MIS_d, RES_IR_monthly_MIS_d

Calculate the incidence rates for birth cohorts and risk factors datasets for MIS/myocard cohorts

09 ANALYSIS: DESCRIPTIVE TABLES AND DASHBOARD TABLES FOR DOSES, COVERAGE, RISK AND BENEFIT

[step 09_1]: create D4_doses_weeks (T3)

input: D3_studyweeks

parameters : study_start, study_end

output: D4_doses_weeks

Creation of D4_doses_weeks dataset starting from D3_studyweeks

[step 09_2]: create descriptive tables (T4)

input: D3_study_population, D3_Vaccin_cohort, D3_study_population_cov_ALL

output: D4_descriptive_dataset_age_studystart, D4_descriptive_dataset_ageband_studystart, D4_descriptive_dataset_sex_studystart, D4_descriptive_dataset_covariate_studystart, D4_followup_fromstudystart, D4_descriptive_dataset_age_vax1, D4_descriptive_dataset_ageband_vax, D4_descriptive_dataset_sex_vaccination, D4_followup_from_vax, Density_plot_distance_doses, Histogram_distance_doses, D4_distance_doses

Create the remaining D4 datasets and tables described in the SAP.

[step 09_3]: create dashboard tables for doses and coverage (T4)

input: D3_vaxweeks, D3_Vaccin_cohort, D3_study_population, D3_study_population_cov_ALL, D4_IR_benefit_week_BC, D4_IR_benefit_fup_BC, D4_IR_benefit_week_RF, D4_IR_benefit_fup_RF, D4_IR_risk_week_BC, D4_IR_risk_fup_BC, D4_IR_risk_week_RF, D4_IR_risk_fup_RF

parameters : list_outcomes_observed

output: DOSES_BIRTHCOHORTS, COVERAGE_BIRTHCOHORTS, DOSES_RISKFACTORS, COVERAGE_RISKFACTORS, BENEFIT_BIRTHCOHORTS_CALENDARTIME, BENEFIT_BIRTHCOHORTS_TIMESINCEVACCINATION, BENEFIT_RISKFACTORS_CALENDARTIME, BENEFIT_RISKFACTORS_TIMESINCEVACCINATION, RISK_BIRTHCOHORTS_CALENDARTIME, RISK_BIRTHCOHORTS_TIMESINCEVACCINATION, RISK_RISKFACTORS_CALENDARTIME, RISK_RISKFACTORS_TIMESINCEVACCINATION

Creation of all dashboard tables (excluding dummy tables)

[step 09_4]: create descriptive tables MIS (T4)

input: D3_Vaccin_cohort, D3_study_population, D3_study_population_cov_ALL, D4_population_b, D4_population_c, D4_population_d, D3_Vaccin_cohort_cov_ALL

output: escriptive_dataset_age_studystart_MIS, D4_descriptive_dataset_ageband_studystart_MIS, D4_descriptive_dataset_sex_studystart_MIS, D4_descriptive_dataset_covariate_studystart_MIS, D4_followup_fromstudystart_MIS_c, D4_followup_fromstudystart_MIS, D4_descriptive_dataset_age_vax1_MIS, D4_descriptive_dataset_ageband_vax_MIS, D4_followup_from_vax_MIS_d, D4_descriptive_dataset_covid_studystart_c_MIS, D4_descriptive_dataset_age_studystart_c_MIS, D4_descriptive_dataset_ageband_studystart_c_MIS, D4_descriptive_dataset_covariate_covid_c_MIS, D4_followup_fromstudystart_MIS_c_total, D4_descriptive_dataset_sex_vaccination_MIS

Create the remaining D4 datasets and tables described in the SAP for MIS/myocard cohorts.

10 CREATE HTML FILES THAT DESCRIBE DATASETS

[step 10_1]: FlowChart description (T4)

input: Flowchart_doses

output: HTML_Flowchart_doses_description

[step 10_2]: Coverage description (T4)

input: COVERAGE_BIRTHCOHORTS

output: HTML_COVERAGE_BIRTHCOHORTS_description

[step 10_3]: Doses description (T4)

input: DOSES_BIRTHCOHORTS

output: HTML_DOSES_BIRTHCOHORTS_description

[step 10_4]: benefit description (T4)

input: BENEFIT_BIRTHCOHORTS_CALENDARTIME, BENEFIT_BIRTHCOHORTS_TIMESINCEVACCINATION

output: HTML_benefit_description

[step 10_5]: risk description (T4)

input: RISK_BIRTHCOHORTS_CALENDARTIME, RISK_BIRTHCOHORTS_TIMESINCEVACCINATION

output: HTML_risk_description

11 ANALYSIS: DESCRIPTIVE TABLES AND DASHBOARD TABLES FOR DOSES, COVERAGE, RISK AND BENEFIT

[step 11_1]: create dummy tables (T4)

input: Flowchart_basic_exclusion_criteria, Flowchart_exclusion_criteria, D4_descriptive_dataset_ageband_studystart, D4_descriptive_dataset_age_studystart, D4_followup_fromstudystart, D4_descriptive_dataset_sex_studystart, D4_descriptive_dataset_covariate_studystart

output: Attrition diagram 1, Attrition diagram 2, Cohort characteristics at start of study (1-1-2020), Cohort characteristics at first COVID-19 vaccination, Doses of COVID-19 vaccines and distance between first and second dose, Number of incident cases entire study period, Code counts for narrow definitions (for each event) separately, Incidence of AESI (narrow) per 100,000 PY by calendar month in 2020, Incidence of AESI (narrow) per 100,000 PY by age in 2020, Incidence of AESI (narrow) per 100,000 PY by age & sex in 2020, Incidence of AESI (narrow) per 100,000 PY by age & sex in 2020, Incidence of AESI (narrow) per 100,000 PY by month in 2021 (non-vaccinated), Incidence of AESI (narrow) per 100,000 PY by week since vaccination

Creation of dummy tables present in SAP.

[step 11_2]: create dummy tables MIS KD (T4)

input: Flowchart_basic_exclusion_criteria, Flowchart_exclusion_criteria, D4_descriptive_dataset_ageband_studystart_MIS, D4_descriptive_dataset_age_studystart_MIS, D4_followup_fromstudystart_MIS, D4_descriptive_dataset_covariate_studystart_MIS, D4_population_d, D4_descriptive_dataset_ageband_studystart_c_MIS, D4_descriptive_dataset_age_studystart_c_MIS, D4_followup_fromstudystart_MIS_c, D4_descriptive_dataset_covid_studystart_c_MIS, D4_descriptive_dataset_covariate_covid_c_MIS, D3_Vaccin_cohort, QC_code_counts_in_study_population_OUTCOME_YEAR, RES_IR_monthly_MIS_b, RES_IR_monthly_MIS_c, RES_IR_monthly_MIS_d

output: Attrition diagram 1, Attrition diagram 2, Cohort characteristics at start of study (1-1-2020), Cohort characteristics at first COVID-19 vaccination, Cohort characteristics at first occurrence of COVID-19 prior to vaccination (cohort c), COVID-19 vaccination by dose and time period between first and second dose (days), Code counts for narrow definitions (for each event) separately, Incidence of AESI (narrow) per 100,000 PY by calendar month in 2020, Incidence of each concept (narrow) per 100,000 PY prior to vaccination and COVID-19, Incidence of each concept (narrow) per 100,000 PY after COVID-19 and prior to vaccination, Incidence of each concept (narrow) per 100,000 PY after vaccination (BRAND)

Creation of dummy tables present in SAP.

[step 11_3]: create dummy tables October (T4)

input: Flowchart_basic_exclusion_criteria, Flowchart_exclusion_criteria, D4_descriptive_dataset_ageband_studystart, D4_descriptive_dataset_age_studystart, D4_followup_fromstudystart, D4_descriptive_dataset_covariate_studystart, D3_Vaccin_cohort, D4_study_population, D3_events_ALL_OUTCOMES, D3_outcomes_covid, RES_IR_risk_fup_BC

output: # output: Attrition diagram 1, Cohort characteristics at start of study (1-1-2020), Cohort characteristics at first dose of COVID-19 vaccine, Cohort characteristics at second dose of COVID-19 vaccine, COVID-19 vaccination by dose and time period between first and second dose (days), Number of incident cases entire study period, Incidence rates of AESI by vaccine and datasource

Creation of dummy tables present in SAP.